
 

Module 6: Advanced Microprocessor Architectures 
Welcome to Module 6! Having grasped the fundamentals of microprocessor operation 
and interfacing, we now embark on a journey into the sophisticated world of 
advanced microprocessor architectures. Modern processors are incredibly complex, 
incorporating innovations like virtual memory, cache, and parallel processing 
techniques to deliver astonishing performance. In this module, we will explore these 
crucial concepts that enable powerful computing, delving into memory management, 
the principles of high-speed caching, and the architectural advancements seen 
across several generations of Intel processors, culminating in a discussion on the 
evolution from CISC to contemporary designs. 

6.1 Concepts of Virtual Memory: Paging, Segmentation, and Memory 
Management Units (MMUs) 
Virtual memory is a memory management technique that provides an application with 
an illusion of a contiguous, large, and private memory space, even if the physical 
memory (RAM) is fragmented or smaller than the application's needs. It allows 
programs to run that are larger than physical memory and isolates processes from 
each other, enhancing system stability and security. The core of virtual memory relies 
on techniques like paging and segmentation, facilitated by a Memory Management 
Unit (MMU). 

6.1.1 The Fundamental Need for Virtual Memory 

In earlier, simpler computing systems, programs directly accessed physical memory. 
This direct access model suffered from several critical limitations: 

● Limited Program Size: A program's executable code and data had to entirely fit 
within the available physical RAM. If RAM was 640KB, a program could not be 
larger than 640KB, severely restricting the complexity of applications. 

● Memory Fragmentation: Over time, as programs were loaded into and 
unloaded from physical memory, the available free space would become 
broken up into many small, non-contiguous blocks. This "external 
fragmentation" made it difficult to allocate large, contiguous memory blocks 
for new programs, even if the total free memory was sufficient. 

● Lack of Protection and Isolation: Without a memory management layer, one 
program could easily (and often accidentally) read from or write to the memory 
space allocated to another program or, critically, to the operating system's core 
memory. This would inevitably lead to system crashes, data corruption, and 
security vulnerabilities. Every program essentially had full access to all of 
physical memory. 

● Program Relocation Complexity: Programs were often compiled with the 
assumption they would be loaded at a specific fixed memory address (e.g., 
address 0). If multiple programs needed to run, or if the program had to be 
loaded at a different address, complex and time-consuming "relocation" 
processes were required, either at compile time, load time, or dynamically. 



 

Virtual memory effectively solves all these problems by creating a robust layer of 
abstraction between the addresses programs use (logical addresses) and the actual 
addresses in RAM (physical addresses). This abstraction ensures that each program 
operates in its own isolated, seemingly vast, and contiguous memory space. 

6.1.2 Logical Addresses vs. Physical Addresses 

● Logical Address (Virtual Address): This is the address that a CPU generates 
when executing instructions. It refers to a location within the program's 
perceived, isolated memory space. From the program's perspective, this space 
is often much larger than the available physical RAM. 

● Physical Address: This is the actual, real address within the main memory 
(RAM). This is the address that the memory controller sees and uses to locate 
data chips. 

● Address Translation: The process of converting a logical address, generated 
by the CPU, into a physical address, which can then be used to access actual 
memory hardware. This vital task is performed by a dedicated hardware 
component: the Memory Management Unit (MMU). 

6.1.3 Paging: Fixed-Size Blocks 

Paging is a virtual memory technique that divides both the logical address space 
(used by programs) and the physical address space (RAM) into fixed-size blocks. 

● Pages: The fixed-size blocks of a program's logical address space. Common 
page sizes are powers of two, such as 4KB (4096 bytes), 8KB, 16KB, etc. The 
choice of page size impacts performance and memory overhead. 

● Frames (Page Frames): The fixed-size blocks of the physical address space 
(RAM). It is crucial that the size of a page is exactly equal to the size of a frame. 

● Page Table: A fundamental data structure that the operating system maintains 
for each running process. The page table resides in main memory and is 
essentially a lookup table that maps logical pages to their corresponding 
physical frames. 

1. Page Table Entry (PTE): Each entry in the page table corresponds to a 
logical page. A PTE typically contains: 

■ Physical Frame Number: The most important part, pointing to 
where the page is physically located in RAM. 

■ Present/Absent Bit: Indicates if the page is currently in physical 
memory (1) or has been swapped out to secondary storage (0). 

■ Read/Write/Execute Bits: Access permissions for the page, 
determining if the CPU can read from, write to, or execute code 
from this page. 

■ Modified (Dirty) Bit: Set if the page has been written to. This is 
important for write-back policies when swapping pages out to 
disk. 

■ Accessed Bit: Set if the page has been read from or written to. 
Used by page replacement algorithms to identify frequently or 
recently used pages. 



 

● Page Fault: If the CPU attempts to access a logical page whose 
"Present/Absent" bit in its PTE is 0 (meaning the page is not currently in RAM), 
a "page fault" interrupt occurs. 

1. The operating system's page fault handler takes control. 
2. It identifies the required page. 
3. It finds an available physical frame in RAM. If no frames are free, it 

selects a "victim" page from RAM (using a replacement algorithm like 
LRU), writes it to disk if it's "dirty" (modified), and then frees up that 
frame. 

4. The required page is loaded from secondary storage (hard disk) into the 
chosen physical frame. 

5. The page table entry (PTE) for that logical page is updated with the new 
physical frame number and the "Present" bit is set to 1. 

6. The CPU instruction that caused the page fault is restarted, and this 
time, the memory access succeeds. 

Address Translation in Paging: 

A logical address generated by the CPU is conceptually divided into two parts: 

● Page Number (P): The higher-order bits of the logical address, identifying 
which logical page the address belongs to. 

● Page Offset (D): The lower-order bits of the logical address, representing the 
offset (byte location) within that specific page. The size of the offset field is 
determined by the page size (e.g., for a 4KB page, the offset is 12 bits, as 2 to 
the power of 12 = 4096). 

The MMU performs the translation: 

1. It takes the Page Number (P) and uses it as an index into the current process's 
Page Table. 

2. It retrieves the Physical Frame Number (F) from the corresponding Page Table 
Entry. 

3. The Physical Address is then constructed by concatenating the Physical 
Frame Number (F) with the original Page Offset (D). Essentially, the Page 
Number part of the logical address is replaced by the Physical Frame Number. 

● Formula: Physical Address = (Physical Frame Number * Page Size) + Page 
Offset 

○ Or, more accurately in binary: Physical Address = (Physical Frame 
Number << Number of Bits for Page Offset) | Page Offset 

● Numerical Example: 
○ Assume a 32-bit logical address space, a 4KB page size (2 to the power 

of 12 bytes), and an 8-bit page number. 
○ Logical Address: 0xABCD1234 

■ Page Number (P): The upper 20 bits (32 - 12 = 20 bits for page 
number) 0xABC 

■ Page Offset (D): The lower 12 bits 0x1234 



 

○ The MMU looks up 0xABC in the Page Table. 
○ Suppose the PTE for page 0xABC contains physical frame number 

0x00EF. 
○ Physical Address = 0x00EF (Physical Frame Number) concatenated with 

0x1234 (Page Offset) = 0x00EF1234. 

Advantages of Paging: 

● Eliminates External Fragmentation: Any free frame can be used for any page, 
preventing memory holes. 

● Simplifies Memory Allocation: The OS simply needs to find a free frame of the 
fixed page size. 

● Efficient Swapping: Pages can be easily swapped in and out of disk without 
requiring contiguous blocks. 

● Robust Memory Protection: Each page can have distinct access rights, 
preventing unauthorized access. 

Disadvantages of Paging: 

● Internal Fragmentation: Since pages are fixed-size, if a program's data or code 
doesn't perfectly fill the last page, the unused portion within that page is 
wasted. (e.g., a 4000-byte program in 4KB pages wastes 96 bytes). 

● Page Table Overhead: Page tables can consume significant amounts of RAM, 
especially for processes with large virtual address spaces. Multi-level page 
tables (like in x86) mitigate this. 

● Two Memory Accesses: A naive paging system would require two memory 
accesses for every data access (one to read the PTE from the page table, then 
one to access the actual data). This is heavily mitigated by the TLB. 

6.1.4 Segmentation: Variable-Sized Blocks 

Segmentation is another virtual memory technique that divides the logical address 
space into variable-sized blocks called segments. Unlike pages, segments are usually 
meaningful to the programmer and correspond to logical units of a program (e.g., 
code segment, data segment, stack segment, heap segment). 

● Segments: Variable-sized logical blocks of a program. Their size is determined 
by the application's needs. 

● Segment Table: Maintained by the operating system for each process. Each 
entry in the segment table (Segment Table Entry, STE) contains: 

○ Segment Base Address: The physical starting address of that segment 
in main memory. 

○ Segment Limit (Length): The size of the segment. 
○ Access Rights: Permissions (read-only, read/write, execute-only, etc.) 

for that specific segment. 

Address Translation in Segmentation: 



 

A logical address in a segmented system is divided into two parts: 

● Segment Selector/Number (S): Identifies the specific segment. 
● Offset (D): Identifies the byte within that segment. 

The MMU performs the translation: 

1. It takes the Segment Number (S) and uses it as an index into the current 
process's Segment Table. 

2. It retrieves the Segment Base Address and Segment Limit. 
3. It performs a limit check: It verifies if the Offset (D) is less than or equal to the 

Segment Limit. If the offset exceeds the limit, it means the program is trying to 
access memory outside its allocated segment, and a protection fault 
(segmentation fault) occurs. 

4. If the offset is valid, the Physical Address is calculated by adding the Segment 
Base Address to the Offset (D). 

● Formula: Physical Address = Segment Base Address + Offset 
○ Validation: Offset <= Segment Limit 

Advantages of Segmentation: 

● Logical Grouping: Segments align with the logical structure of a program, 
making memory protection and sharing more intuitive for programmers. 

● Protection: Each segment can have independent access permissions, 
providing fine-grained control. 

● Efficient Handling of Dynamic Data Structures: Data structures like stacks and 
heaps can grow or shrink within their segments without needing to allocate 
new, larger contiguous blocks. 

Disadvantages of Segmentation: 

● External Fragmentation: Since segments are variable-sized, memory can still 
suffer from external fragmentation, making it harder to find large contiguous 
blocks for new segments. 

● Complex Memory Allocation: The operating system's memory manager has to 
deal with variable-sized memory blocks, which is more complex than fixed-size 
pages. 

● Difficulty with Swapping: Swapping variable-sized segments to disk is more 
complex than fixed-size pages. 

6.1.5 Memory Management Units (MMUs) 

The MMU is a critical hardware component, almost universally integrated directly into 
the CPU chip in modern processors. Its primary role is to manage and perform the 
real-time translation of logical (virtual) addresses to physical addresses. 

Core Functions of the MMU: 



 

1. Address Translation: This is the MMU's main task, using either paging tables, 
segment tables, or a combination of both (as in x86's segmented paging) to 
convert virtual addresses to physical ones on the fly. 

2. Memory Protection: The MMU enforces access rights (read/write/execute) 
defined in page table entries or segment descriptors. If a program attempts an 
unauthorized operation (e.g., writing to a read-only page), the MMU triggers a 
protection fault, preventing potential system corruption. It also ensures a 
program cannot access memory outside its allocated virtual space. 

3. Virtual Memory Support: The MMU detects various memory access violations 
or conditions that require OS intervention, such as: 

○ Page Faults: When a requested page is not in physical memory. 
○ Segment Limit Violations: When an offset exceeds a segment's defined 

limit. 
○ Permission Violations: When an access violates read/write/execute 

permissions. 
In such cases, the MMU generates an interrupt, allowing the operating 
system to handle the situation. 

4. Cache Control Interaction: The MMU works closely with the processor's cache 
memory. Before a memory access is sent to main memory, the MMU translates 
the address. This translated address is then used to check if the data is 
present in the cache. 

Translation Lookaside Buffer (TLB): Speeding Up Translation 

To overcome the performance overhead of address translation (which, in a basic 
paging system, would mean two memory accesses for every data access: one for the 
page table entry, one for the data), modern MMUs incorporate a small, very fast cache 
called the Translation Lookaside Buffer (TLB). 

● The TLB stores recently used logical-to-physical address mappings (Page 
Number -> Physical Frame Number). 

● TLB Hit: When the CPU generates a logical address, the MMU first checks the 
TLB. If the mapping for that logical page is found in the TLB (a "TLB hit"), the 
physical address is generated almost instantaneously, avoiding a slower main 
memory access for the page table. 

● TLB Miss: If the mapping is not found in the TLB (a "TLB miss"), the MMU must 
then access the page table in main memory to find the translation. Once found, 
the mapping is loaded into the TLB (potentially replacing an older entry), and 
the physical address is generated. 

● TLB Flush: When the operating system performs a context switch (switches 
from one process to another), the TLB entries for the old process are typically 
no longer valid for the new process. The TLB must be "flushed" (cleared) to 
prevent incorrect translations. 

6.2 Cache Memory: Principles, Types (L1, L2, L3), Cache Coherence, and 
Performance Implications 



 

Cache memory is a fundamental component of modern high-performance 
microprocessors. It is a small, very fast memory that stores copies of data from 
frequently used main memory locations. Its primary goal is to bridge the significant 
speed gap between the fast CPU and the slower main memory, thereby drastically 
reducing the average time taken to access data and instructions. The effectiveness of 
cache memory relies heavily on the locality of reference. 

6.2.1 Principles of Cache Memory Operation 

● Locality of Reference: This empirical observation states that programs tend to 
access memory locations that are either spatially or temporally close to 
previously accessed locations. 

○ Temporal Locality: If a piece of data or an instruction is accessed, it is 
highly probable that it will be accessed again very soon. (e.g., variables 
in a loop, loop instructions themselves). 

○ Spatial Locality: If a memory location is accessed, it is likely that nearby 
memory locations will be accessed in the near future. (e.g., sequential 
instruction execution, array processing). 
Cache designs exploit these principles by bringing in not just the 
requested data, but also surrounding data, and by keeping recently 
used data readily available. 

● Cache Hit: This occurs when the CPU requests a piece of data or an 
instruction, and a copy of that data is found in the cache. This is the fastest 
access path, usually taking only a few CPU clock cycles. 

● Cache Miss: This occurs when the CPU requests data, and it is not found in the 
cache. In this scenario, the CPU must stall (or switch to another task if it 
supports out-of-order execution) while the data is fetched from the slower main 
memory (or a lower-level cache) and copied into the cache. This process takes 
significantly longer than a cache hit. 

● Cache Line (Cache Block): The smallest unit of data transfer between main 
memory and cache. When a cache miss occurs, an entire cache line (typically 
32, 64, or 128 bytes) containing the requested data is fetched from main 
memory and copied into a cache slot. This leverages spatial locality. 

● Cache Mapping Functions: Determine where a particular block of main memory 
can be placed within the cache. This impacts how effectively the cache can be 
utilized and how hits are detected. 

○ Direct-Mapped Cache: Each block from main memory can only go into 
one specific location in the cache. This is simple to implement but 
suffers from conflict misses if frequently used data items map to the 
same cache location. 

○ Set-Associative Cache: A block from main memory can go into any 
location within a specific "set" of cache lines. This offers a balance 
between simplicity and flexibility. An N-way set-associative cache 
means a block can map to any of N locations within a set. Most modern 
caches are set-associative. 

○ Fully Associative Cache: A block from main memory can be placed in 
any location in the entire cache. This offers the most flexibility and 
lowest miss rates (for a given cache size) but is the most complex and 



 

expensive to implement due to the need for parallel tag comparisons 
across all cache lines. 

● Replacement Algorithms: When a cache miss occurs and the cache is full, a 
cache line must be evicted to make space for the new data. The replacement 
algorithm decides which line to remove. 

○ Least Recently Used (LRU): Evicts the line that has not been accessed 
for the longest time. Generally effective due to temporal locality, but 
complex to implement accurately for large set associativities. 

○ First-In-First-Out (FIFO): Evicts the oldest line in the cache. Simple but 
may evict frequently used data. 

○ Random: Evicts a random line. Simple, but performance can be 
unpredictable. 

● Write Policies: Determine when data that has been modified in the cache is 
written back to main memory. 

○ Write-Through: Data is written to both the cache and main memory 
simultaneously on every write. This ensures main memory is always 
up-to-date, simplifying coherence, but it is slower due to constant main 
memory access and can clog the memory bus. 

○ Write-Back: Data is written only to the cache initially. A "dirty bit" is set 
for the modified cache line. The modified line is written back to main 
memory only when it is evicted from the cache (e.g., by a replacement). 
This is much faster for burst writes to the same location, as it avoids 
frequent main memory accesses. However, it is more complex to 
implement, especially in multi-processor systems, due to the need for 
cache coherence. 

6.2.2 Types of Cache Memory: L1, L2, L3 Hierarchy 

Modern processors utilize a multi-level cache hierarchy to provide a balance of speed, 
size, and cost. Data flows up and down this hierarchy. 

● L1 Cache (Level 1 Cache): 
○ Location: Integrated directly into each CPU core. It is physically the 

closest memory to the execution units. 
○ Size: Smallest in the hierarchy, typically ranging from tens of KBs (e.g., 

32KB to 128KB). 
○ Speed: Fastest, operating at the full CPU clock speed (1-4 clock cycles 

latency). 
○ Purpose: Stores the most immediately and frequently accessed 

instructions and data. To maximize concurrent access, L1 cache is 
almost always split into separate L1 Instruction Cache (L1i) and L1 Data 
Cache (L1d). 

○ Write Policy: Often write-back for L1d to maximize performance. 
● L2 Cache (Level 2 Cache): 

○ Location: Can be on-chip (integrated into the CPU die but separate from 
the core, often shared by a pair of cores) or, in older architectures, on a 
separate chip very close to the CPU package. 



 

○ Size: Larger than L1, typically ranging from hundreds of KBs to several 
MBs (e.g., 256KB to 8MB per core or core pair). 

○ Speed: Slower than L1 but significantly faster than main memory (tens 
of clock cycles latency, e.g., 10-20 cycles). 

○ Purpose: Acts as a second-level buffer. If data is not found in L1, the 
CPU checks L2. L2 cache often serves as a unified cache for both 
instructions and data, caching data from L1 (if it's inclusive) and directly 
from main memory. 

○ Write Policy: Typically write-back. 
● L3 Cache (Level 3 Cache): 

○ Location: Almost always on-chip, and crucially, it is typically shared 
among all CPU cores in a multi-core processor. 

○ Size: Largest in the hierarchy, ranging from several MBs to tens or even 
hundreds of MBs (e.g., 4MB to 64MB+). 

○ Speed: Slower than L2 but still much faster than main memory 
(hundreds of clock cycles latency, e.g., 30-100 cycles). 

○ Purpose: Serves as a common, shared buffer for all cores, reducing 
main memory accesses and maintaining data consistency (coherence) 
between cores. It typically contains copies of data from both L2 caches 
and main memory. 

○ Write Policy: Typically write-back. 

6.2.3 Cache Coherence: Maintaining Data Consistency 

In multi-core processors, or systems with multiple devices (like DMA controllers, 
GPUs) that can independently access and modify shared memory, it's possible for the 
same data to exist in multiple caches simultaneously. Cache coherence is a critical 
mechanism that ensures all copies of a shared memory block across different caches 
(and main memory) are consistent and up-to-date. If one copy is modified, all other 
cached copies must reflect this change. 

● The Problem: Without coherence, if CPU A modifies a data item in its L1 cache, 
and CPU B later reads the "same" data item from its own L1 cache (which 
holds an old copy), CPU B will be using stale, incorrect data, leading to 
program errors. 

● Coherence Protocols: These are sets of rules and communication mechanisms 
used by caches to maintain consistency. 

○ Snooping Protocols (e.g., MESI protocol): A widely used technique in 
bus-based systems. Each cache controller "snoops" (monitors) the 
memory bus for all transactions. When a processor performs a write 
operation, it broadcasts this intention on the bus. All other caches then 
"snoop" this write. If they have a copy of the modified data, they will 
take appropriate action (e.g., invalidate their copy). 

● MESI Protocol States (for each cache line): 
○ M (Modified): The cache line has been modified by this processor and is 

"dirty" (different from main memory). This cache holds the only valid 
copy of the data. 



 

■ Action on Read by another core: Cache writes data back to main 
memory, then changes state to S (Shared). 

■ Action on Write by another core: Invalidate its own copy (goes to 
I state). 

○ E (Exclusive): The cache line is clean (matches main memory) but is 
only present in this cache. No other cache has a copy. 

■ Action on Write by this core: Changes state to M. No bus 
transaction needed initially. 

■ Action on Read by another core: Changes state to S (Shared). 
○ S (Shared): The cache line is clean (matches main memory) and may be 

present in other caches. 
■ Action on Write by this core: Cache sends an "invalidate" signal 

on the bus, forcing all other caches to invalidate their copies. 
Then changes state to M. 

○ I (Invalid): The cache line is invalid and does not contain valid data. Any 
attempt to use it will result in a cache miss. 

■ Action on Read by this core: Fetches from lower cache/main 
memory, goes to E or S state. 

6.2.4 Performance Implications of Cache Memory 

Cache memory is one of the most significant performance enhancers in modern 
computing: 

● Reduced Average Memory Access Time (AMAT): This is the direct impact. Most 
memory accesses become fast cache hits, drastically reducing the effective 
time the CPU spends waiting for data. 

○ Formula: AMAT = (Hit Rate * Hit Time) + (Miss Rate * Miss Penalty) 
■ Where Hit Rate = Number of Hits / Total Accesses 
■ Miss Rate = 1 - Hit Rate 
■ Hit Time = Time to access cache (very low) 
■ Miss Penalty = Time to fetch data from lower memory hierarchy + 

update cache (very high) 
○ Numerical Example: 

■ L1 Hit Time = 1 ns 
■ Main Memory Access Time (Miss Penalty) = 100 ns 
■ If L1 Hit Rate = 95% (0.95), Miss Rate = 5% (0.05) 
■ AMAT = (0.95 * 1 ns) + (0.05 * 100 ns) = 0.95 ns + 5 ns = 5.95 ns 
■ Without cache, AMAT would be 100 ns. The cache provides a 

~16.8x speedup. 
● Increased Processor Throughput: By providing data quickly, cache memory 

keeps the CPU's execution units busy, allowing it to complete more 
instructions per unit of time. 

● Enabling Higher Clock Speeds: Processors can be designed to run at much 
higher clock frequencies because they are less constrained by the slower 
access times of main memory. 



 

● Power Efficiency: Accessing data from on-chip cache memory consumes 
significantly less power than accessing off-chip main memory. 

6.3 Introduction to 286, 386, and 486 Architectures: Key Advancements 
in Protection Modes, Multitasking, and Pipelining 
The Intel x86 processor family underwent a series of revolutionary architectural 
changes from the 8086/8088 to the 486. These advancements fundamentally 
transformed personal computing, providing the necessary hardware support for 
modern operating systems, multitasking, and graphical user interfaces. 

6.3.1 Intel 80286 (i286) 

● Introduction: Launched in 1982, the 80286 was Intel's successor to the 
8086/8088. It aimed to address the limitations of the original 8086, particularly 
regarding memory addressing and multi-user/multi-tasking capabilities. 

● Key Advancements: 
○ Protected Mode: This was the most crucial innovation of the 286. It 

introduced a new operational mode alongside the backward-compatible 
"Real Mode." 

■ Real Mode: The 286 starts in Real Mode, behaving almost 
identically to an 8086 processor. It can only access up to 1MB of 
physical memory, and memory protection is absent. This ensured 
compatibility with existing DOS applications. 

■ Protected Mode: Once activated by the operating system, 
Protected Mode provided several critical features: 

■ Virtual Addressing (1GB Virtual, 16MB Physical): While the 
physical address bus was expanded to 24 bits (allowing 
access to 16MB of RAM, a significant jump from 1MB), the 
286's segment-based virtual memory system could 
address up to 1GB of virtual memory per task. This was 
managed using Descriptor Tables. 

■ Memory Protection: This was a hardware-enforced 
mechanism. Each segment in Protected Mode was 
described by a Segment Descriptor (stored in Global 
Descriptor Table (GDT) or Local Descriptor Table (LDT)). 
This descriptor contained the segment's physical base 
address, its size (limit), and most importantly, its access 
rights (read-only, read/write, execute-only, data, code, etc.) 
and privilege level (Ring 0 for OS kernel, Ring 3 for user 
applications). If a program tried to access memory outside 
its segment's defined limits or violate its access rights, 
the MMU would trigger a protection fault. This prevented 
programs from corrupting each other or the OS, crucial for 
stability. 

■ Hardware Multitasking Support: The 286 included 
dedicated hardware to support fast task switching. The 
operating system could load a Task State Segment (TSS) 



 

descriptor into a special register, and the hardware would 
automatically save the state of the current task and load 
the state of a new task, including its registers and 
segment descriptors. This enabled much more efficient 
context switching than purely software-managed methods. 

○ Basic Pipelining: The 286 introduced a very basic instruction pipeline 
with typically four stages (e.g., Fetch, Decode, Execute, Write-back). 
This allowed the processor to overlap operations, fetching the next 
instruction while the current one was decoding, marginally improving 
throughput compared to a purely sequential execution. 

6.3.2 Intel 80386 (i386) 

● Introduction: Launched in 1985, the 80386 was a monumental leap, ushering in 
the era of true 32-bit computing for the x86 platform. It was the first Intel 
processor that made robust multitasking operating systems like Windows and 
Linux practical. 

● Key Advancements: 
○ Full 32-bit Architecture: 

■ 32-bit Registers: All general-purpose registers (AX, BX, CX, DX, 
etc.) were extended to 32 bits, gaining an 'E' prefix (EAX, EBX, 
ECX, EDX, ESP, EBP, ESI, EDI). This allowed them to hold larger 
values and address larger memory regions. 

■ 32-bit Data Bus: Capable of transferring 32 bits of data to and 
from memory in a single cycle. 

■ 32-bit Address Bus: Could directly address up to 4GB of physical 
RAM (2 to the power of 32 bytes). This was a massive increase 
over the 286's 16MB. 

○ Integrated Paging Unit: The 386 was the first x86 processor to integrate 
a full-fledged hardware paging unit directly onto the CPU die, working in 
conjunction with segmentation. This allowed for demand paging, where 
a program's virtual memory could be much larger than physical RAM, 
and only the currently used pages needed to be loaded. 

■ Two-Level Page Table Structure: To manage large 32-bit address 
spaces efficiently, the 386 introduced a two-level page table: a 
Page Directory and Page Tables. 

1. The CPU's Control Register 3 (CR3) pointed to the base of 
the Page Directory in physical memory. 

2. The upper 10 bits of the 32-bit logical address indexed an 
entry in the Page Directory, which pointed to a specific 
Page Table. 

3. The next 10 bits of the logical address indexed an entry in 
that Page Table, which contained the physical frame 
number. 

4. The lower 12 bits of the logical address were the page 
offset, used directly to locate the byte within the physical 
frame. 



 

○ Virtual 8086 Mode: A clever feature that allowed the 386 (running in 
Protected Mode) to simulate multiple, isolated 1MB 8086 environments. 
This meant that multiple older DOS applications, which expected direct 
access to memory, could run concurrently within a protected, 
multitasking operating system, each believing it had exclusive control 
of a 1MB memory space. The OS would use the paging unit to map 
these virtual 1MB spaces to different physical locations and handle 
hardware access. 

○ Enhanced Pipelining: The instruction pipeline was deepened and 
refined compared to the 286, allowing more instructions to be "in flight" 
simultaneously, further improving instruction throughput. 

6.3.3 Intel 80486 (i486) 

● Introduction: Introduced in 1989, the 80486 was largely an optimized and highly 
integrated version of the 386, focusing on increasing performance through 
hardware integration rather than fundamental architectural shifts (though it did 
make internal improvements). It solidified the 32-bit architecture. 

● Key Advancements: 
○ Integrated Level 1 (L1) Cache: The 486 was the first x86 processor to 

incorporate an 8KB L1 cache directly onto the CPU die. This cache was 
unified (meaning it stored both instructions and data in the same 
cache). This integration dramatically reduced the average memory 
access time by providing a very fast local buffer for frequently used 
data and code. A high L1 cache hit rate meant the CPU rarely had to wait 
for slower main memory. 

○ Integrated Floating-Point Unit (FPU): In prior generations (like the 386), 
floating-point arithmetic was handled by a separate, optional "math 
coprocessor" chip (e.g., the 387 FPU). The 486 integrated a full-featured 
FPU directly onto the main CPU die. This tight integration eliminated the 
overhead of communication between two separate chips, providing a 
massive speed boost for floating-point calculations essential for CAD, 
scientific simulations, and early graphical applications. 

○ Enhanced Pipelining and Single-Cycle Execution: The 486 featured a 
highly optimized 5-stage pipeline. Many common instructions could now 
complete in a single clock cycle (one CPI, cycles per instruction), which 
was a significant performance improvement over the multiple cycles per 
instruction common in earlier designs. This was achieved through 
better pipeline design and instruction forwarding. 

○ Burst Mode Support: The 486's memory interface supported burst mode 
transfers, allowing it to fetch multiple cache lines (e.g., 4 x 4-byte words 
for a 16-byte cache line) from main memory in a single, efficient burst 
after a cache miss. This drastically reduced the penalty of a cache miss. 

○ Write-Back L1 Cache: The L1 cache typically utilized a write-back policy, 
further improving performance by allowing writes to complete quickly 
within the cache and delaying updates to slower main memory until the 
cache line needed to be evicted. 



 

Summary of Advancements (286, 386, 486): 

This generation marked a fundamental shift for the x86 architecture. The 286 
introduced hardware memory protection and rudimentary multitasking, paving the 
way. The 386 solidified the 32-bit standard, introduced full paging, and enabled robust 
virtual memory and multi-process DOS environments. The 486 then integrated key 
performance accelerators (L1 cache, FPU) and optimized the pipeline, leading to a 
much faster and more capable single-chip CPU that was the bedrock for the 
emergence of modern graphical operating systems. 

6.4 The Pentium Processors: Superscalar Architecture, Branch 
Prediction, and MMX Technology 
The Intel Pentium series, starting with the original Pentium processor in 1993, 
represented a significant architectural leap beyond the 486. These processors 
introduced advanced techniques to exploit parallelism at the instruction level and 
added specialized capabilities for multimedia. 

6.4.1 Superscalar Architecture 

● The Concept: Prior to the Pentium, most processors were "scalar" processors, 
meaning they could execute at most one instruction per clock cycle. A 
superscalar architecture is capable of executing multiple instructions 
simultaneously in a single clock cycle by employing multiple parallel execution 
units. This increases the Instruction Per Cycle (IPC) rate. 

● Pentium Implementation: The original Pentium processor was a 2-way 
superscalar machine. It had two independent integer pipelines, commonly 
referred to as the U-pipe and the V-pipe. 

○ The U-pipe was a full-featured pipeline capable of executing any integer 
instruction. 

○ The V-pipe was a simpler pipeline, capable of executing a subset of 
integer instructions (e.g., simple integer arithmetic, data moves). 

○ The processor's instruction decoder and dispatcher would analyze 
incoming instructions. If two adjacent instructions were independent of 
each other (i.e., the second instruction did not rely on the result of the 
first instruction), and the second instruction was compatible with the 
V-pipe, the Pentium could issue both instructions in the same clock 
cycle, one to the U-pipe and one to the V-pipe. 

● Benefits: This parallel execution capability was a major driver of performance. 
Instead of waiting for one instruction to complete before starting the next, the 
Pentium could process instructions in parallel, significantly increasing 
throughput and making applications run much faster without necessarily 
increasing the clock frequency as much. 

● Challenges: Implementing a superscalar architecture is complex. It requires 
sophisticated hardware for: 

○ Instruction Fetching: Fetching multiple instructions at once. 
○ Instruction Decoding: Decoding multiple instructions in parallel. 
○ Dependency Checking: Determining if instructions are independent and 

can be executed simultaneously. This is done by checking for data 



 

dependencies (e.g., one instruction writes a register that the next 
instruction reads) and resource dependencies (e.g., both instructions 
need the same execution unit). 

○ Instruction Dispatching: Sending instructions to the correct available 
execution unit. 

6.4.2 Branch Prediction 

● The Problem in Pipelining: Instruction pipelines are highly efficient when 
instructions flow linearly. However, branch instructions (like conditional IF 
statements, FOR loops, WHILE loops, or function calls) disrupt this flow. When 
a branch is encountered, the processor doesn't know which set of instructions 
to fetch next (the "taken" path or the "not taken" path) until the branch 
condition is evaluated, which happens later in the pipeline. This uncertainty 
causes the pipeline to stall while it waits for the branch outcome, creating a 
"pipeline bubble" where no useful work is done. This wasted time is called a 
branch penalty. 

● Principle of Branch Prediction: To mitigate branch penalties, modern 
processors use branch prediction techniques. The idea is to guess the 
outcome of a branch instruction before it is actually executed. If the guess is 
correct, the pipeline continues without interruption. 

● Pentium Implementation: The Pentium incorporated a Branch Target Buffer 
(BTB). 

○ The BTB is a small, specialized cache that stores historical information 
about recently encountered branch instructions, including their 
addresses, their typical outcomes (taken or not taken), and the target 
address if the branch is taken. 

○ When the instruction fetch unit encounters a branch instruction, it 
immediately consults the BTB. 

○ Based on the historical pattern (e.g., "this loop branch has been taken 9 
out of 10 times"), the BTB makes a prediction. 

○ The processor then speculatively fetches and even begins executing 
instructions from the predicted path. 

○ Correct Prediction (High Hit Rate): If the prediction turns out to be 
correct when the branch condition is finally resolved, the pipeline has 
continued without a stall, yielding significant performance gains. 

○ Misprediction: If the prediction is wrong, the processor must flush the 
entire pipeline. All speculatively fetched and partially executed 
instructions from the wrong path must be discarded. The pipeline then 
needs to be refilled with instructions from the correct path. A 
misprediction incurs a substantial performance penalty (many clock 
cycles, potentially tens of cycles), making the accuracy of branch 
prediction crucial. 

● Branch Predictor Types (Simplified): Simple predictors might just store the last 
outcome. More advanced predictors (like 2-bit saturating counters, common in 
modern CPUs) track multiple past outcomes to make more accurate 
predictions (e.g., "if taken twice, predict taken"). 



 

● Benefits: Branch prediction is essential for high-performance processors. 
Programs frequently contain branches (e.g., loops, if/else statements), and 
accurate prediction significantly reduces pipeline stalls, leading to higher 
effective clock speeds and improved overall performance. 

6.4.3 MMX Technology (MultiMedia eXtensions) 

● Introduction: Introduced with the Pentium MMX processor in 1997. MMX was 
Intel's first major step into adding specialized instructions for accelerating 
specific types of workloads beyond general-purpose integer and floating-point 
operations. 

● Purpose: To accelerate common operations found in multimedia and 
communications applications, such as: 

○ 2D and 3D graphics rendering (e.g., pixel manipulation, texture 
mapping) 

○ Audio processing (e.g., digital filters, sound synthesis) 
○ Video encoding and decoding (e.g., motion estimation, discrete cosine 

transform) 
○ Image processing 

● Principle: SIMD (Single Instruction, Multiple Data): The core of MMX is the 
SIMD paradigm. Instead of processing one piece of data at a time, SIMD 
instructions allow a single instruction to operate simultaneously on multiple, 
smaller pieces of data packed together in a larger register. 

○ MMX added a new set of 57 instructions and introduced eight 64-bit 
MMX registers. These MMX registers (MM0-MM7) were, somewhat 
controversially, aliased (shared memory space) with the existing 80-bit 
FPU (floating-point unit) registers. This meant that a program could not 
use both MMX and FPU instructions concurrently without incurring 
performance penalties for context switching between the two. 

● Packed Data Types: MMX instructions operated on "packed data" types. A 
64-bit MMX register could be interpreted as: 

○ Eight 8-bit integers (packed bytes) 
○ Four 16-bit integers (packed words) 
○ Two 32-bit integers (packed doublewords) 

● Numerical Example (Packed Addition): 
○ Consider adding two sets of four 8-bit pixel values, say (10, 20, 30, 40) 

and (5, 10, 15, 20). 
○ Without MMX (traditional approach): This would require four separate 

8-bit addition instructions, each reading two bytes from memory, adding 
them, and writing the result. 

○ With MMX: 
1. Load (10, 20, 30, 40) into one 64-bit MMX register (e.g., MM0). 
2. Load (5, 10, 15, 20) into another 64-bit MMX register (e.g., MM1). 
3. Execute a single PADDB (Packed Add Byte) MMX instruction: 

PADDB MM0, MM1. 
4. In one instruction cycle, the processor would perform all four 

8-bit additions in parallel, storing the results (15, 30, 45, 60) back 
into MM0. 



 

● Benefits: MMX provided a significant performance boost (2x to 4x or more) for 
applications that could effectively utilize its SIMD capabilities. It was 
particularly impactful for software rendering, image manipulation, and audio 
codecs, which often involve repetitive, identical operations on large streams of 
small integer data. This paved the way for future, more powerful SIMD 
instruction sets (like SSE, AVX). 

Summary of Pentium Advancements: 

The Pentium generation was a landmark in microprocessor design. Its superscalar 
architecture enabled true instruction-level parallelism, moving beyond sequential 
instruction execution. Branch prediction addressed a major bottleneck in pipelining, 
and MMX technology introduced dedicated hardware and instructions for multimedia 
acceleration, setting a precedent for specialized instruction sets in future CPUs. 
These innovations collectively propelled PC performance to new heights, making 
them suitable for increasingly complex and graphically rich applications. 

6.5 Evolution of Processor Architectures: From CISC to Modern Designs 
The journey of microprocessor architectures has been one of continuous innovation, 
driven by the relentless demand for higher performance, greater energy efficiency, 
and the ability to handle increasingly diverse and complex computational workloads. 
This evolution often involves a conceptual shift from purely Complex Instruction Set 
Computer (CISC) philosophies towards hybrid designs that incorporate principles 
from Reduced Instruction Set Computer (RISC), ultimately leading to highly parallel, 
multi-core, and specialized architectures. 

6.5.1 CISC (Complex Instruction Set Computer) 

The x86 architecture, from its origins (like the 8086) through to the 486, is 
fundamentally a CISC architecture. 

● Characteristics: 
○ Large and Complex Instruction Set: CISC architectures are defined by 

having a very large number of instructions (sometimes hundreds or 
thousands), many of which are highly specialized and perform complex 
operations in a single instruction. Examples include single instructions 
for string copy (like MOVS in x86), polynomial evaluation, or array 
indexing with bounds checking. 

○ Variable Instruction Length: Instructions in CISC can vary significantly 
in length (e.g., from 1 byte to 15 bytes in x86). This variability makes 
instruction fetching and decoding more challenging. 

○ Complex Addressing Modes: CISC architectures support a wide variety 
of addressing modes, allowing data to be accessed in many flexible 
ways (e.g., register indirect, base-indexed with scale and displacement). 

○ Microcode Control: Complex CISC instructions are often implemented 
using microcode. This is a layer of simpler, internal operations 
(micro-operations or µops) stored in a special control memory within 
the CPU. When a complex instruction is fetched, the microcode engine 



 

executes a sequence of these simpler µops to perform the instruction's 
function. This simplifies the hardware design for complex instructions 
but can make execution slower. 

○ Fewer General-Purpose Registers: Historically, CISC designs tended to 
rely more on memory operations and had fewer general-purpose 
registers available to the programmer compared to RISC designs. 

● Advantages (Historical Context): 
○ Fewer Instructions Per Program: A single, powerful CISC instruction 

could accomplish what might take several simpler instructions in other 
architectures. This led to denser code (smaller program sizes). 

○ Simpler Compilers (Early Days): For early, less sophisticated compilers, 
having complex instructions that directly mapped to high-level language 
constructs could simplify code generation. 

○ Memory Efficiency: Smaller program sizes were advantageous when 
main memory was expensive and limited. 

● Disadvantages: 
○ Complex Decoding Logic: The variable instruction lengths and diverse 

formats make the instruction decoding hardware within the CPU very 
complex and potentially slow. 

○ Difficult for Pipelining: The variable instruction lengths, multi-cycle 
execution for complex instructions, and complex addressing modes 
make it very challenging to design efficient, deep pipelines. Pipeline 
stalls are more frequent. 

○ Slower Clock Cycles (Historically): The complexity of the control logic 
could limit the maximum clock frequency achievable. 

○ Higher Power Consumption: Due to the complex control logic and 
decoding. 

6.5.2 RISC (Reduced Instruction Set Computer) 

RISC architectures emerged in the 1980s as a reaction to the complexity of CISC, 
advocating for a simpler, more streamlined approach. 

● Characteristics: 
○ Small, Simple, and Uniform Instruction Set: RISC designs feature a 

small number of highly optimized instructions, each performing a very 
basic operation (e.g., ADD, SUB, LOAD, STORE, JUMP). 

○ Fixed Instruction Length: All instructions are typically the same size 
(e.g., 32 bits). This greatly simplifies instruction fetching and decoding. 

○ Simple Addressing Modes: Fewer and simpler ways to access memory, 
often just base-plus-offset. 

○ Hardwired Control: Instructions are typically implemented directly in 
hardware logic ("hardwired"), rather than through microcode, for faster 
execution. 

○ Many General-Purpose Registers: RISC architectures typically have a 
large number of general-purpose registers (32 or more). This allows 
compilers to keep frequently used data in registers, minimizing slower 
memory accesses. 



 

○ Load/Store Architecture: The only instructions that can access main 
memory are explicit LOAD (to move data from memory into a register) 
and STORE (to move data from a register into memory) instructions. All 
other operations (arithmetic, logical) operate exclusively on data held in 
processor registers. This keeps the execution units simpler and faster. 

● Advantages: 
○ Faster Instruction Execution: Most RISC instructions can execute in a 

single clock cycle, or very few cycles, due to their simplicity. 
○ Highly Efficient Pipelining: The fixed instruction length and simple, 

predictable execution times make it much easier to design very deep 
and highly efficient instruction pipelines, achieving high IPC. 

○ Lower Power Consumption: Simpler design leads to less power usage. 
○ Easier Compiler Optimization: The uniform instruction set and large 

number of registers make it easier for compilers to generate highly 
optimized code, scheduling instructions effectively for pipelines. 

○ Faster Clock Cycles: Simpler control logic allows for higher clock 
frequencies. 

● Disadvantages: 
○ More Instructions Per Program: To perform a complex task, a RISC 

processor might need to execute many more individual instructions 
compared to a CISC processor. This can lead to larger program code 
size. 

○ Requires Sophisticated Compilers: To fully extract performance, RISC 
architectures rely heavily on optimizing compilers to schedule 
instructions efficiently and manage register usage effectively. 

● Examples: ARM processors (dominant in mobile devices), MIPS, SPARC, 
PowerPC. 

6.5.3 Hybrid Architectures (Modern x86 Processors) 

Despite the apparent advantages of RISC, the x86 architecture (a CISC design) has 
remained dominant in the desktop and server markets. This is largely due to the 
massive existing software ecosystem and continuous innovation that led to hybrid 
architectures. Modern Intel and AMD x86 processors are fundamentally CISC 
externally but operate much like RISC processors internally. 

● The Translation Layer: Modern x86 processors employ a sophisticated 
front-end that acts as a CISC-to-RISC translator. 

○ When a complex x86 instruction is fetched, a dedicated hardware unit 
(often called the decoder or micro-ops generator) dynamically translates 
it into a sequence of simpler, fixed-length, internal RISC-like operations 
called micro-operations (µops) or micro-ops. 

○ Analogy: Imagine a chef who receives complex meal orders (CISC 
instructions). Instead of cooking the entire meal at once, the chef breaks 
down each order into a series of very simple, standardized sub-tasks 
(µops), like "chop onions," "sauté garlic," "boil pasta." These simple 
sub-tasks can then be quickly and efficiently executed by specialized 
kitchen stations. 



 

● Internal RISC Core: These generated µops are then fed into a highly optimized, 
pipelined, and often out-of-order execution engine that resembles a RISC 
processor. This internal core can: 

○ Execute multiple µops in parallel (superscalar). 
○ Reorder µops for optimal execution (out-of-order execution), resolving 

dependencies and keeping execution units busy. 
○ Perform speculative execution based on branch predictions. 
○ Utilize many internal "physical" registers (much more than the 

architectural x86 registers) for efficient µop processing. 
● Benefits: This hybrid approach successfully combines the best of both worlds: 

○ Backward Compatibility: Maintains full compatibility with the vast 
existing body of x86 software. 

○ High Performance: Achieves high performance by executing the internal 
RISC-like µops very efficiently on a highly parallel internal core. 

6.5.4 Further Evolution and Modern Trends in Processor Architectures 

The evolution of processor architectures continues at a rapid pace, driven by new 
computing paradigms and challenges: 

● Multi-Core Processors: This is the most fundamental shift in recent decades. 
Instead of solely increasing single-core clock speeds, processors now 
integrate multiple independent CPU cores onto a single chip. Each core can 
execute instructions independently, enabling true parallel execution of multiple 
tasks or threads. This addresses the "power wall" (difficulty in increasing clock 
speeds further without excessive heat) by relying on parallelism rather than 
serial speed. 

● Increased Cache Sizes and Levels: The cache hierarchy has become deeper 
(L1, L2, L3, sometimes L4) and cache sizes have grown significantly (up to 
hundreds of MBs of shared L3 cache) to further reduce memory access latency 
and handle larger working sets. 

● Wider Pipelines and More Execution Units: Processors continue to deepen 
their pipelines and add more parallel execution units (multiple integer ALUs, 
multiple FPUs, dedicated load/store units, branch units). This increases 
Instruction Level Parallelism (ILP), allowing more µops to be processed 
concurrently. 

● Out-of-Order Execution (OOO): Modern processors use sophisticated OOO 
engines. They don't simply execute instructions in the program's sequential 
order. Instead, they analyze the µops, identify dependencies, and execute 
independent µops whenever their required resources are available, even if they 
appear later in the program code. The results are then reordered to appear as if 
they executed in program order. This maximizes utilization of execution units. 

● Speculative Execution: This has become extremely advanced. Processors 
aggressively predict branches, memory accesses, and even data values, then 
speculatively execute instructions based on these predictions. If a prediction is 
wrong, the speculative work is rolled back. This pushes the boundaries of 
performance but has also introduced security challenges (e.g., Spectre, 
Meltdown vulnerabilities) that require architectural mitigations. 



 

● Vector/SIMD Extensions (SSE, AVX, NEON): Building on the MMX concept, 
modern CPUs include much more powerful SIMD instruction sets like 
Streaming SIMD Extensions (SSE, various versions), Advanced Vector 
Extensions (AVX, AVX2, AVX-512), and ARM's NEON. These extensions feature 
wider registers (128-bit, 256-bit, 512-bit) that can pack even more data elements 
(e.g., 16 x 32-bit integers or 32 x 16-bit integers) and perform parallel 
operations on them, providing massive speedups for highly parallelizable 
tasks in multimedia, scientific computing, deep learning, and cryptography. 

● Specialized Accelerators: Beyond general-purpose CPU cores, modern 
System-on-Chips (SoCs) and even CPU packages integrate dedicated hardware 
accelerators for specific, computationally intensive tasks: 

○ Graphics Processing Units (GPUs): Initially for graphics rendering, now 
widely used for general-purpose parallel computation (GPGPU) in AI, 
scientific simulation, and cryptocurrency mining. 

○ Neural Processing Units (NPUs): Dedicated hardware optimized for 
accelerating machine learning (ML) and artificial intelligence (AI) 
workloads, especially neural network inference. 

○ Digital Signal Processors (DSPs): Specialized for signal processing 
tasks in audio, video, and communication. 

● Power Efficiency: With the rise of mobile devices and large data centers, power 
consumption has become a critical design constraint. Modern architectures 
employ numerous techniques to improve energy efficiency: 

○ Clock Gating: Turning off the clock signal to inactive parts of the chip. 
○ Power Gating: Completely cutting power to unused blocks. 
○ Dynamic Voltage and Frequency Scaling (DVFS): Dynamically adjusting 

clock frequency and voltage based on workload, reducing power when 
less performance is needed. 

○ Dark Silicon: Areas of the chip that are powered down for energy 
saving. 

● Hardware-Level Security Features: Growing awareness of security threats has 
led to architectural enhancements like Intel Software Guard Extensions (SGX) 
and AMD Secure Encrypted Virtualization (SEV), which aim to create secure 
enclaves or protect virtual machines from attacks, even from compromised 
operating systems. 

This continuous evolution allows microprocessors to meet the ever-increasing 
demands for processing power, enabling complex software, data-intensive 
applications, and the pervasive use of AI in modern computing. 

 


	Module 6: Advanced Microprocessor Architectures 
	6.1 Concepts of Virtual Memory: Paging, Segmentation, and Memory Management Units (MMUs) 
	6.1.1 The Fundamental Need for Virtual Memory 
	6.1.2 Logical Addresses vs. Physical Addresses 
	6.1.3 Paging: Fixed-Size Blocks 
	6.1.4 Segmentation: Variable-Sized Blocks 
	6.1.5 Memory Management Units (MMUs) 

	6.2 Cache Memory: Principles, Types (L1, L2, L3), Cache Coherence, and Performance Implications 
	6.2.1 Principles of Cache Memory Operation 
	6.2.2 Types of Cache Memory: L1, L2, L3 Hierarchy 
	6.2.3 Cache Coherence: Maintaining Data Consistency 
	6.2.4 Performance Implications of Cache Memory 

	6.3 Introduction to 286, 386, and 486 Architectures: Key Advancements in Protection Modes, Multitasking, and Pipelining 
	6.3.1 Intel 80286 (i286) 
	6.3.2 Intel 80386 (i386) 
	6.3.3 Intel 80486 (i486) 

	6.4 The Pentium Processors: Superscalar Architecture, Branch Prediction, and MMX Technology 
	6.4.1 Superscalar Architecture 
	6.4.2 Branch Prediction 
	6.4.3 MMX Technology (MultiMedia eXtensions) 

	6.5 Evolution of Processor Architectures: From CISC to Modern Designs 
	6.5.1 CISC (Complex Instruction Set Computer) 
	6.5.2 RISC (Reduced Instruction Set Computer) 
	6.5.3 Hybrid Architectures (Modern x86 Processors) 
	6.5.4 Further Evolution and Modern Trends in Processor Architectures 



